Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

4-Ethynyl-1,2-methylenedioxybenzene at 150 K

Simon E. Lawrence, ${ }^{\text {a* }}$ Alexander J. Blake, ${ }^{\text {b }}$ Anita R. Maguire ${ }^{\text {a }}$ and Edmond J. A. Moynihan ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, University College Cork, Cork, Ireland, and ${ }^{\mathbf{b}}$ School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England
Correspondence e-mail: s.lawrence@ucc.ie

Received 21 November 2000
Accepted 7 December 2000
The title compound, $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{2}$, contains two moderate C $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. That involving the terminal alkyne gives rise to chains along the b axis. The other hydrogen bond occurs over a centre of symmetry, leading to dimers. The combination of the two interactions gives rise to rings, each comprising six molecules, which are part of infinite sheets in the $b c$ plane.

Comment

The packing of simple aromatic compounds has attracted interest (Desiraju \& Kishan, 1989; Weiss et al., 1997). It has been demonstrated by Sarma \& Desiraju (1986) that the effects of heteroatoms (principally O or Cl) either within the aromatic ring or peripheral to it can be structure determining. A low number of heteroatoms means that structures tend to adopt herring-bone motifs; benzene, with none, is the archetypal example (Bacon et al., 1964). On the other hand, higher numbers of heteroatoms can lead to stacked motifs, e.g. pyranthrone (Sarma \& Desiraju, 1986). Desiraju \& Kishan (1989) demonstrated this principle with structural studies on 3,4-(methylenedioxy)cinnamic acid and [3,4-(methylenedioxy)phenyl]propiolic acid. Therefore, we decided to examine the structural motifs present in the related compound 4-ethynyl-1,2-methylenedioxybenzene, (I).

(I)

Compound (I) lies in a general position (Fig. 1), but with the non-H atoms coplanar to within $0.008 \AA$. All molecular geometry parameters lie within the normal ranges (Allen et al., 1987).

The most significant feature of (I) is the presence of two intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1). The first occurs over a centre of symmetry so that the aromatic H 2 atom acts as a donor to $\mathrm{O} 9^{\text {ii }}$ [symmetry code: (ii) $1-x, 1-y$,
$-z]$, generating a dimeric centrosymmetric $R_{2}^{2}(8)$ motif (Fig. 2).

The second intermolecular hydrogen bond involves the alkynyl H 8 atom, which acts as a donor to n-glide-related $\mathrm{O} 9^{\mathrm{i}}$ [symmetry code: (i) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$]. This generates $C(7)$ chains along the y axis, leading to herring-bone chains in the $a b$ plane. The top half of each dimer is related to the bottom half of the neighbouring dimer by this $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction (Fig. 2). Therefore, the dimers are related to each other in a zigzag manner along the b direction within the $b c$ plane. The

Figure 1
A view of the structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
combination of the two hydrogen bonds generates a six-molecule $R_{6}^{4}(28)$ ring as part of an infinite two-dimensional sheet (Fig. 2). There is also a possible $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 11^{\mathrm{iii}}$ interaction [symmetry code: (iii) $-x, 1-y, 1-z$] between dimers related by a centre of symmetry in the middle of the $R_{6}^{4}(28)$ ring.

Figure 2
The packing diagram of (I) showing part of an infinite two-dimensional sheet in the $b c$ plane. The component dimeric units and six-molecule rings are visible [symmetry codes: (i) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $1-x, 1-y,-z$].

Experimental

Compound (I) (Pelter et al., 1990) was prepared according to the method of Corey \& Fuchs (1972). 3,4-(Methylenedioxy)benzaldehyde was firstly transformed to the dibromoalkene by treatment with carbon tetrabromide, triphenylphosphine and zinc; subsequent treatment with butyllithium generated the title alkyne, (I), which exists as a supercooled oil at room temperature. The sample was placed in a sealed capillary and cooled in situ on the diffractometer using an Oxford Cryosystems open-flow cryostat (Cosier \& Glazer, 1986). The crystal was grown by repeated cycling of the temperature across the freezing point of the compound $(260 \mathrm{~K})$.

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{2}$

$M_{r}=146.14$
Monoclinic, $P 2_{1} / n$
$a=6.318$ (3) \AA
$b=15.867$ (10) \AA
$c=7.571$ (4) A
$\beta=115.03$ (3) ${ }^{\circ}$
$V=687.7(7) \AA^{3}$
$Z=4$
$D_{x}=1.411 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 40 reflections
$\theta=10.2-12.6^{\circ}$
$\mu=0.100 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Needle, pale yellow
$0.19 \times 0.11 \times 0.08 \mathrm{~mm}$

Data collection

Stoe Stadi-4 four-circle diffractometer
ω / θ scans
5424 measured reflections
1356 independent reflections
729 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.196$

$$
\begin{aligned}
& \theta_{\max }=26.04^{\circ} \\
& h=-7 \rightarrow 7 \\
& k=-19 \rightarrow 19 \\
& l=-9 \rightarrow 9
\end{aligned}
$$

3 standard reflections frequency: 60 min intensity decay: 9.6%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.086$
$w R\left(F^{2}\right)=0.163$
$S=1.153$
1356 reflections
100 parameters

H-atom parameters constrained
H-atom parameters constr
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+1.6470 P\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.31 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.35 \mathrm{e}^{\AA^{-3}}$

Table 1
Geometry of hydrogen bonds and short intermolecular contacts $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O}^{\mathrm{i}}$	0.95	2.58	$3.526(7)$	178
$\mathrm{C}^{\mathrm{i}}-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{ii}}$	0.95	2.53	$3.344(7)$	143
C5—H5 $^{\mathrm{H}} \mathrm{O}^{\mathrm{iii}}$	0.95	2.70	$3.529(7)$	146

Symmetry codes: (i) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $1-x, 1-y,-z$; (iii) $-x, 1-y, 1-z$.

All H atoms were clearly defined in difference maps and were then treated as riding, with $\mathrm{C}-\mathrm{H}=0.95$ or $0.99 \AA$. Examination of the structure with PLATON (Spek, 2000) showed that there were no
solvent-accessible voids in the crystal lattice. The high value of $R_{\text {int }}$ is attributed to the presence, within the region of the capillary irradiated by the X-ray beam, of additional crystallites of (I), the presence of which is an unavoidable consequence of the crystalgrowth method.

Data collection: STADI4 (Stoe \& Cie, 1997); cell refinement: STADI4; data reduction: X-RED (Stoe \& Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2000); software used to prepare material for publication: SHELXL97 and PLATON.

We thank the EPSRC (UK) for the provision of a diffractometer and Enterprise Ireland for support under International Collaboration grant No. IC/1999/097.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1130). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bacon, G. E., Curry, N. A. \& Wilson, S. A. (1964). Proc. R. Soc. London Ser. A, 279, 98-110.
Corey, E. J. \& Fuchs, P. L. (1972). Tetrahedron Lett. pp. 3769-3772.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Desiraju, G. R. \& Kishan, K. V. R. (1989). J. Am. Chem. Soc. 111, 4838-4843.
Pelter, A., Ward, R. S. \& Little, G. M. (1990). J. Chem. Soc. Perkin Trans. 1, pp. 2775-2790.
Sarma, J. A. R. P. \& Desiraju, G. R. (1986). Acc. Chem. Res. 19, 222-228.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2000). PLATON. Version of May 2000. University of Utrecht, The Netherlands.
Stoe \& Cie (1997). STADI4 (Version 1.07) and X-RED (Version 1.09). Stoe \& Cie, Darmstadt, Germany.
Weiss, H.-C., Bläser, D., Boese, R., Doughan, B. M. \& Haley, M. M. (1997). J. Chem. Soc. Chem. Commun. pp. 1703-1704.

